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This equation shows, combined with (A 12), valid for |R |+ 0, that G(R) satisfies (4) (Morse—FEsu-
BACH 1, p. 809).

The function G(R) satisfies the boundary conditions on the side planes (35a,b) as it can be seen
directly from (40).

The boundary conditions (36 a,b) are also satisfied. This can be proved as follows. For example, for
(36 a) we consider at first the integral

IS =2 f Gs(rt s 0 } Tt/, O) Gsz(rt,, F41 I T“, Zl) ds,, (A 15)
where G,,=23G,/3z. If Re(s) >2 we obtain from the expression (39), using the known properties of

Haxxker functions,

I,= - '.1 2ks—2 exp : l'*s*z" r <s> > |21z | HQ)Q.H—I (lezi_zl ‘) exp {iKmt' (rt_rtl)} s (A 16)

2 ] 2 m F :Qns -1

Since it is assumed that z; ¥ z; this expression is an analytic function of s except at the poles of I'(} s).
Hence putting s =1 we have

11 =2 J‘ G(rts 0 i rt,v 0) Gz(rtla Zj | rtlv zl) dS, = G(rta Zj l rt]a zl) .
This proves (36a). (36b) can be proved in the same way.
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In this paper an instability calculation is given for an axially symmetric gas distribution which
has a differential rotation and in which a magnetic field is present. It is a generalization of similar
calculations given by Cuanprasekuar and Ber and Scuarzman. The generalization becomes necessary
for the study of problems of the formation of planetary systems and star formation.

The instability conditions and the critical wave lengths are calculated for plane-wave-like dis-
turbances. For disturbances running perpendicularly to the axis of rotation instability can occur
only if the gas density exceeds a critical value which depends on the differential rotation at the
considered distance only as long as pressure gradients and gradients of the magnetic field strength
are negligible. If the gas density exceeds this critical value the shortest unstable wave length is
proportional to the square root of v1>4wvp2, where v means the velocity of sound and vp the
AvrvEx-velocity.

For disturbances running parallel to the axis of rotation in addition to the Jeans instability a
new type of instability occurs due to the simultaneous action of the magnetic field and the differen-
tial rotation; for rigid rotation this instability vanishes.
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auf kompliziertere Gaskonfigurationen ohne und mit
Magnetfeld sind in unserer Zeit u. a. von CHANDRA-

1 J. H. Jeaxs, Phil. Trans. Roy. Soc. London 199, 1 [1902].

2 S. CuanprasekHAR U. E. Fermi, Astrophys. J. 118, 116 [1953].

3 W. Frickg, Astrophys. J. 120, 356 [1954].

4 S. CHANDRASEKHAR, Vistas in Astronomy, Pergamon Press,
London 1955, p. 344.

5 N. Ber u. E. Scuatzman, Rev. Mod. Phys. 30, 1015 [1958].

und ScHaTzZMAN 5, SarroNov ® und Gripbpon 7 ausge-
fithrt worden. Die hier durchgefiihrte ist eine Ver-
allgemeinerung der von CHANDRASEKHAR ¢ und BEL
und Scuarzman ®. Sie geht aus neueren Untersuchun-
gen zur Entstehung von Sternen und Planetensyste-
men hervor 8.

6 V. Sarronov, Ann. Astrophys. 23, 979 [1960].

7 J. E. C. Guiopox, Astrophys. J. 145, 583 [1966].

R. EBert, Zur Theorie der Entstehung von Planetensyste-
men, Habilitationsschrift, Universitdt Frankfurt a. M. 1964
Magnetohydrodynamical Model of the Formation of Pla-
netary Systems, Astrophys. J., in Vorbereitung.

®

@NOIS)

) Wissenschaften e.V. digitalisiert und unter folgender Lizenz veréffentlicht:

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift fiir Naturforschung
in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Férderung der

Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland
Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der
Creative Commons Lizenzbedingung ,Keine Bearbeitung*) beabsichtigt,
um eine Nachnutzung auch im Rahmen zukiinftiger wissenschaftlicher
Nutzungsformen zu erméglichen.

This work has been digitalized and published in 2013 by Verlag Zeitschrift
fir Naturforschung in cooperation with the Max Planck Society for the
Advancement of Science under a Creative Commons Attribution-NoDerivs
3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal
of the Creative Commons License condition “no derivative works”). This is
to allow reuse in the area of future scientific usage.



432

Als ungestorte Gaskonfiguration wird ein unter
seiner Eigengravitation stehendes Plasma gewahlt,
das Axialsymmetrie hat, von einem Magnetfeld
durchsetzt wird und sich in differentieller Rotation
befindet. In dem gleichzeitigen Zulassen von Magnet-
feld und differentieller Rotation liegt die Erweite-
rung zu fritheren Rechnungen. Der differentiellen
Rotation wird keine Einschriankung auferlegt; das
ungestorte Magnetfeld dagegen soll parallel zur Ro-
tationsachse ausgerichtet sein.

Da bei vielen astrophysikalischen Prozessen die
Gasdichten extrem niedrig sind, hat das Plasma
meist sehr hohe elektrische Leitfahigkeit. Es wird
daher die vereinfachende Annahme unendlicher Leit-
fahigkeit gemacht. Der Zustand des ungestorten
Plasmas und Magnetfeldes soll ferner in Richtung
der Rotationsachse translationsinvariant sein, es wird
also streng genommen unendliche Schichtdicke vor-
ausgesetzt. Trotzdem sind die hier gewonnenen Er-
gebnisse auch fiir Plasmaverteilungen mit endlichen
Schichtdicken von Bedeutung. Bei dhnlichen Instabi-
litatsrechnungen von Fricke® und Sarronov ® nim-
lich hat sich gezeigt, dal} die Abweichungen in den
sich ergebenden kritischen Dichten fiir den Fall end-
licher Dicke der rotierenden Gasscheibe verglichen
mit dem Fall unendlicher Dicke nur relativ gering
sind (maximal um den Faktor 1,5), sofern die Sto-
rungswellenldnge nicht grofl gegeniiber der Schicht-
dicke wird. Und diese Bedingung ist in vielen Fal-
len erfiillt.

1. Differentialgleichungssystem fiir die
Storungsgrofen

Die Annahme unendlicher Leitfahigkeit bedeutet
das Bestehen der Gleichung ?

cE+vxB=0, (1)

R. EBERT

wo E und B elektrische und magnetische Feldstirke,
v die makroskopische Geschwindigkeit des Plasmas
und c die Lichtgeschwindigkeit bedeuten. Wegen der
geringen Dichte im interstellaren Gas gilt ferner mit
sehr guter Ndherung up=1, wenn up die magneti-
sche Permeabilitét ist. Die Gleichungen der Magneto-
hydrodynamik ® zusammen mit den Gleichungen der
Gravitation vereinfachen sich dadurch zu

dv v?
Q{ ; + grad (27+¢) —erotv}

3
+gradp+ 41:!B><rotB=0, (2)
¥ —rot(vxB) =0, divB=0,  (3)

2‘; +div(ow) =0, (4)
AD 476G o=0, 5)
p="72, (6)

“w

wo 0, p und T die Dichte, den Druck und die Tem-
peratur des Gases, @ das Gravitationspotential, G
und R Gravitations- und allgemeine Gaskonstante,
1 das Molekulargewicht des Gases und ¢ die Zeit
bedeuten.

Es wird nun der Stérungsansatz

Qu/dt=0 (7
gemacht, wo u symbolisch fiir jede der GroBen o, p,
@, v, B steht, die tiberstrichenen Werte die unge-

storte Grofle bezeichnen und die Storungsgroflen du
als klein gegen die & vorausgesetzt werden. Der un-

u=1u-+ou,

gestorte Zustand soll ferner ein stationérer oder stati-
scher Zustand sein. Zwischen der Druck- und Dichte-
storung soll die Beziehung gelten

6P=UT2 6Qa (8)

wo vp die allein von der Temperatur abhingige
Schallgeschwindigkeit des Gases bedeutet.

Als Differentialgleichungssystem fiir die Storungen ergibt sich, wenn grad @ noch mit Hilfe der anderen

ungestorten GroBen eliminiert wird,

gt (0v) +grad(V-0V +6D) —v X ot dv — (V) Xrotv

1= {grad(vT2 do) +
0 4

do

T (@*

9 Siehe z. B. L. Seirzer, Physics of Fully Ionized Gases, Inter-
science Publishers Inc., New York 1956. — T. G. Cowwixg,

i & 1 =
anrot(SB—i- = (6B)><roth (9)

(gradﬁ+ 411 _erotﬁ) =0,

Magnetohydrodynamics, Interscience Publishers Inc., New
York 1957.
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aat (0B) —rot[v % 6B + (8v) x B] =0, div(3B) =0, (10)
5
ot

Um die zu Anfang erwihnte Annahme iiber die Axialsymmetrie des ungestorten Zustandes auszunutzen,
werden Zylinderkoordinaten s, @, z eingefiihrt. Die angenommene Translationsinvarianz in z-Richtung
(unendliche Schichtdicke) erzwingt ferner z-Unabhingigkeit der ungestorten Grofen. Daher ist

v=(0,5(s),0), B=(0,0,B(s)), (13)

wo die Groflen in der Klammer jeweils die s-, ¢- und z-Komponente und s der Abstand von der Achse
bedeuten. Werden fiir die Stérungen noch die Bezeichnungen

5v=(v35v¢svz)1 6B=(bs’b¢,b2)’ 6¢=5a 6Q=77 (14‘)
eingefithrt und wird o (s) mit Hilfe der Winkelgeschwindigkeit Q(s) =s"17(s) ausgedriickt, so ergibt
sich das folgende Differentialgleichungssystem:

(00) +div(gdv+v o) =0, A(6D)—-47Gd=0. (11), (12)

. _— —— - T, _ 2 o
Vs + stlw_zng— lf (Bbslz_Bbzls_Bls bz) + 1’.{‘ 77[5_'*_!.“ (F_)'" *(B)E) 77"_8'3:0? (15)
4.’«19 o 02 8x s
¢ 5 o o I B 1 2 1
Vo + valw+ (22+sQ) vi— I:% (bwlz_‘ u bzlq:) + ZT&_) N+ s €,=0, (16)
1')2+ ?gvzlw_’g'ls_" bs+ 1?2 77|2+812=03 (17
47 p 0
l.)s+?)bs[q,——§vs]z=0, (18)
by —Bvg,— (2+58,,) by —52(byis+bs,) =0, (19)
.bz +§b21m+ (?* +Els )Us+Evsls+ §U¢|w=0, (20)
. _— é—) - - 1 _
N +Qn,+ +0is)Vs+0 (vsis+ Voo +Vaz | =0, (21)
\ § / S J
bys+ i b+ 1’ byip+b22=0, (22)
€55+ 1 &5+ ;1;8,0,@-1-8,2.2—-47:017:0. (23)
- .2 3 _ 3 _ 9
Hierin bedeutet =5 ) *= 3g° 2= 5,0
und fiir die Schallgeschwindigkeit vp wurde —% vp2=0, (24)

also Isothermie der ungestorten Verteilung angenommen.

2. Instabilititskriterien und kritische Wellenlangen

Fiir einen einfachen Typ von Storungen, der ungefdhr ebenen Wellen entspricht, gelingt es, Aussagen
dariiber zu gewinnen, welche Bedingungen erfiillt sein miissen, damit diese Storungen stindig weiter an-
wachsen konnen und wie grof} die kritischen Wellenldngen sind.

a) Storungswelle in s-Richtung
Wir untersuchen zuerst das Verhalten einer in s-Richtung laufenden Storungswelle in der Umgebung

der Entfernung s,. Die Stérung habe die Form

o 1 —iks—ot) ~ 1 —i(ks—ot)
s~ € s B~ e s soF0 (25)

und alle anderen StorungsgroBen  ~ e iksTeD)



434 R. EBERT

k und o sind Konstanten und die Storungswellenldnge 4 ist durch A=2n k™! (26)
gegeben. Fiir alle Storungsgrofien gilt

3 . 3 _ 3 _

A vl =0. (27)
Zusammen mit den Gln. (18), (22), (19), (17) folgt daraus bs=b,=v,=0. (28)

Die verbleibenden Differentialgleichungen konnen leicht gelost werden unter der Annahme, alle dort auf-
tretenden Koeffizienten seien konstant. Im allgemeinen ist dies natiirlich nicht der Fall (auch nicht bei kon-
stantem ¢, 2, B), aber je kleiner die Storungswellenlinge ist, desto besser wird diese Annahme zutreffen;
genau miissen dazu die Bedingungen

I<Lsy, 10,<Q, 1§5,<@, IB,<B (29)

erfillt sein, wo s, die Entfernung bedeutet, bei der die Storung untersucht wird. Im folgenden werden wir
die differentielle Rotation beriicksichtigen, die Gradienten in der Dichte und im Magnetfeld aber vernach-
ldssigen. Fiir Probleme, bei denen die Gravitationskraft hauptsichlich durch eine differentielle Rotation
kompensiert wird, stellt dies eine zuldssige Ndherung dar.

Es verbleibt dann ein Gleichungssystem, das unter Beachtung der Beziehungen

1 _ 1 _ ik —itks—wb)
Vsis + e Vs = s (sv5) 5= —ikvy= % € s (30)
1 1 . ik —iihs—
Eigist+ — &= — (SSJS)[SZ —lkf‘s,-\’\i~ Le iks wt)’
s s So

in Matrixform geschrieben die Gestalt hat:

iw —20 - iEB - IF

4ap o ! Us

| 20+5, 02, iw 0 0 0 v
‘ e _ 7 =0, (31)

—ikB 0 iw 0 0 b,

—ikp 0 0 iw 0 n

0 0 0 —47G —ik | ey

Gl. (31) hat nur dann eine nichttriviale Losung, wenn die Determinante Dy der linken Seite verschwindet.

Es muf} daher die Gleichung
Dy=ika?{—?+20Q(20+s)Q,) —47Ga+k (v +v52) } =0 (32)

erfiillt sein, wo vg die ArrvEN-Geschwindigkeit mit tionsinstabilitiat auftreten soll. Sie hat den Wert
2_p2 = o)
vp?=B%*/4n (33) §<2§+s %9>
bedeutet. Echte Instabilitdt der Storung liegt vor, D S . 36
. . Qc 2nG ’ ( )
wenn ®?<0 und das bedeutet, wenn wir von jetzt

ab an Stelle von s, einfach s schreiben, ist also unabhéngig von der magnetischen Feldstirke
B+ <4aGg—202(20+s G). (34) allein durch das Gesetz der differentiellen Rotation
gegeben. Die kritische Wellenldnge dagegen ist vom

it (26) folgt d Is kritische Wel-
Zusammen mit (26) folgt daraus als kritiscve We Magnetfeld abhdngig; sie wird in jedem Falle durch

lenlinge 1;, die tberschritten werden mul}, damit

Instabilitat auftritt, das Feld vergrofert.
po [ wrttus?) s (35) Als Spezialfille gehen aus (35) und (36) die von
o { e Q (2 Ots 8@) ) CranprASEKHAR und FERMI 2 (2=0), von CHANDRA-
& 2w Os sekuAR? (B=0, Q=const) und von BerL und

Aus (35) geht hervor, dal} es eine kritische Dichte o, Scuatzman (B =0) gefundenen Instabilitétskrite-
gibt, die iiberschritten werden muf}, wenn Gravita- rien hervor.
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Die kritische Dichte o, stellt eine verallgemeinerte
Rocue-Dichte dar, denn fiir KepLer-Rotation des

Gases Q= (GM)"s~"* geht (36) iiber in
M

ic: P——— .
N 4sd

Die kritische Dichte wird Null fiir die Fille 2 =0

und Q~s2. Im zweiten Fall handelt es sich um

(37)

eine Stromung, bei der rot¥ =0 ist. Die kritische
Wellenlange 4 geht dabei in die Jeaxssche Wellen-
lange 45 uiber, wenn noch das Magnetfeld verschwin-
det, also

A=Ay = (?‘,G?gi)” fir B=0 u. ?2~{f_2 (38)

b) Storungswelle in @-Richtung

Die Storung habe in der Umgebung der Entfer-
nung s, die Form

1 o —itkp—ot) ,
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Dann gilt

- =i, a‘——ilc, 2 =0

3¢ dp 3z
fir alle Storungsgrofen, und ferner verschwinden
die s-Ableitungen aufler fiir v, fir das (svs)s=0
gilt.

Unter der Bedingung (29) und Vernachldssigung
von 9; und B ergibt sich nach Ausfiihrung der
Differentiationen ein Gleichungssystem, das zum
Teil entkoppelt ist. Aus (18), (19), (22) folgt als
Bedingung einer nichttrivialen Lésung fiir bs und b,
das gleichzeitige Erfiilltsein der Gleichungen

®w—kQ=0 und w—k(sQ),,=0, (40)
was nur fiir 2 = const , also fiir starre Rotation er-
fillt ist. In diesem Falle liegt aber keine echte In-
stabilitdt vor, weil w2 <0 nur fiir rein imaginares k

erfiilllt wiare. Ebenso folgt aus (17), daf w=kQ,
wenn v, = 0 sein soll. Fiir die weitere Instabilitats-

vs~ soF0 (39)  untersuchung konnen wir daher
und alle anderen StorungsgroBen ~ e~ ik#—ot) bs=b,=v,=0 (41)
setzen. Die verbleibenden Gleichungen lauten in Matrixform
| i(w—EkD) 20 0 0 0 | v |
ro A, ’ 5 ikB i kv ik |
| 0 ”:B Hw—kD) 0 o || » |=0. (42)
0
; 0 ..l 0 i0—kD) 0 5
i S0 1 ‘
2 |
0 0 0 sz —-E | .
so? i

Die Forderung des Nullwerdens der Determinante D, von (42) fiir die Existenz einer nichttrivialen Lo-

sung fiihrt hier auf die Gleichung

D= 5 -k @~ (0-k Q)+ o +o?) +20(2Q+59,) -476}-0. 43

Gl. (43) hat als Losungen, wenn wir von dem un-
interessanten Fall £ = 0 absehen, erstens

w=kQ, (44)

was einer Schwingung entspricht, die mit derselben
Geschwindigkeit in @-Richtung lauft wie das unge-
storte Plasma, fiir einen mitbewegten Beobachter
also zeitunabhingig ist; die zeitliche Anderung fiir
einen mitbewegten Beobachter ist ndmlich

i ,,a,+—ﬁ~,va—~ =l(w—k§)-

dt ot s J¢ (43)

Und als zweite Losung folgt
—(0-kD)2—4aGC5+22(22+sy2:)

+s"z (vr? +vp?) =0. (46)
0

Instabilitat liegt unter Beachtung von (45) vor,
wenn

(w—kQ)2<0, (47)

also wenn fiir einen mit ¥ bewegten Beobachter die
Storung standig anwéchst. Aus (46) und (47) er-
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gibt sich die Instabilitatsbedingung
B o +0p?) <4a63-28(20+53,). (48)
0
Da wegen (39) fiir die Storungswellenldnge in ¢-
Richtung die Beziehung
1=2 sk (49)
gilt, ergibt sich aus (48) die gleiche minimale Sto-

rungswellenlidnge 7, und die gleiche kritische Dichte
0. wie im Fall der Stérungswelle in s-Richtung, also

lomly, g=HEEEeL)  (50)
iw —20Q ikli 0
47
2 D455 i@ 0 ift%
ikB iw 0
lkE —S??m iw
0

R. EBERT

¢) Storungswelle in z-Richtung

Als Stérungswelle werde gewihlt

1 —itke—ot) ,
S

Vg~

B, e 1 —itke—wt) , s=0,
S

alle anderen Storungsgrofien ~e~ik27eD | (5]1)

Aus (20) und (22) folgt b,=0, und die anderen
Differentialgleichungen liefern, wieder unter Bedin-
gung (29) und Vernachldssigung von 9,5 und B,
das Gleichungssystem in Matrixform

Vs
0 | Vp |

bs

=0. (52)
by
—ikp iw 0 vz
. i kor® .
iw = —ik ”
0

0 —4nG -k &

Das System zerfallt also in zwei getrennte Systeme. Nullsetzen der Determinante D, von (52) ergibt

D=k (0 — ko2 +4aGa){0* -2 w?[KRve+ Q202 +52,)] + P vg(B2+2s203,)}=0, (53)

was entweder fur

0 —FPvp’+4a6Gp=0 (54)
erfullt ist oder fiir
0t~ 20 [+ 2202 +52,)]
+I2vg2(k2+2sQQ,) =0. (55)

Instabilitat liegt vor, wenn w*<0, und das fiihrt
im ersten Fall auf die Jeanssche Wellenldnge 4; als
kritische Wellenldnge, also auf

ZJ = <CT sz )l/2

= (56)

wo vy die Schallgeschwindigkeit ist. Dieser Storungs-
typ ist also unabhangig von der Grofle des Magnet-
feldes.

Im zweiten Fall ergibt sich eine andere Art von
Instabilitat, die nur mit dem Magnetfeld und der
differentiellen Rotation zusammenhéngt und zu kei-
ner Verdichtung des Plasmas fithrt. Auf Grund des
Zerfallens von (52) in zwei getrennte Systeme er-
gibt sich namlich fir die Groflen v, , 7, ¢ Null, wenn

(55) gilt. Auflssung von (55) nach w? liefert nun
0 =k2v2+ Q2 02+s5Q,)

+Q{4kv2+ (2Q+s Q2. (57)

Die Bedingung ®w?< 0 bedeutet, da} entweder

k2’032<—89!_213-—2!—22 (58)

oder

o< —2520, (59)

sein muf}. Da stets s >0 und % nicht rein imaginér
sein darf, ist diese Bedingung nur fiir 2,;<0 zu er-
fillen. (59) stellt dann die giinstigere Bedingung
dar, und als kritische Wellenlénge 2, folgt

L — V2mvp _ Vx B
: - 00\ _ =30\
(232" (—22:2%0)" (o)
mit o <0,
Os

wo vg die ALrvEN-Geschwindigkeit (33) bedeutet.
Fiir Keprer-Rotation [Q = (G M)"* s~"] ergibt sich

_ VaBs'

he = BpGM”’ L)
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Mit wachsender magnetischer Feldstirke nimmt
die kritische Wellenldnge 4, zu, wahrend sie mit
grofler werdender Abweichung von der starren Ro-
tation abnimmt. Bei starrer Rotation verschwindet
die Instabilitdt ganz, weil dann 1,= oo . Wie (52)
zeigt, ist bei diesem Instabilititstyp b;==0 im Un-
terschied zu allen anderen Instabilititen, bei denen
stets by =0 ist. Das Zustandekommen der kritischen
Wellenldnge 4, ist daher zu verstehen durch das Ge-
geneinanderwirken der differentiellen Rotation, die
die magnetischen Feldlinien der Stérung zu verlén-
gern sucht, und derjenigen MaxweLLschen Spannun-
gen, die dem entgegenwirken. Mit steigender Sto-
rungswellenldnge nehmen die riicktreibenden Max-
weLLschen Spannungen ab, so dal von einer be-
stimmten Wellenlange ab der differentiellen Rota-
tion eine stindige Verldngerung der Feldlinien ge-
lingt.

Wir betrachten noch den Grenzfall B=0. Aus
(60) folgt A, =0. Dies bedeutet aber nicht, dafl hier
notwendig Instabilitit vorlige; mit 1,=0 wird
ndmlich auch @ =0. Gl. (55) oder (57) zeigt aber,
daf} es fir B=0 (d. h. v =0) noch eine zweite Lo-
sung gibt, ndmlich

0?=20(20+s52,), B=0. (62)
In diesem Fall tritt Instabilitat auf, wenn
? (D) <0, (63)
Js

ganz unabhéngig von k. Bedingung (63) ist erfiillt,
wenn das Geschwindigkeitsfeld bei wachsendem s
mit einer stirkeren Potenz in s abnimmt als eine
Stromung mit rotv=0.

3. Zusammenfassung

Die Untersuchung hat folgendes gezeigt: Ein axial-
symmetrisches Plasma mit unendlicher elektrischer
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Leitfahigkeit, das sich in differentieller Rotation um
die Symmetrieachse befindet, das von einem Magnet-
feld in Richtung der Symmetrieachse durchsetzt wird
und in dem das Geschwindigkeitsfeld allein die
Eigengravitation kompensiert, zeigt gegen eine zy-
lindrische Storungswelle in s-Richtung nur dann In-
stabilitat, wenn die Massendichte des Plasmas eine
bestimmte kritische Dichte o, [Gl. (36)] tberschrit-
ten hat. Diese kritische Dichte ist unabhéngig von
der Wellenlinge der Storung und von der Starke
des Magnetfeldes allein durch die differentielle Ro-
tation bestimmt. Ist die kritische Dichte iiberschrit-
ten, so tritt Instabilitdt nur auf, wenn die Storungs-
wellenlinge groBer als eine kritische Wellenldnge 4
[Gl. (35)] ist. Mit wachsender Temperatur und
wachsender Stirke des Magnetfeldes wichst die kri-
tische Wellenléinge. Gegeniiber einer ebenfrontigen
Storungswelle in @-Richtung zeigt das Plasma das
gleiche Verhalten wie im Fall der Storungswelle in
s-Richtung. Kritische Dichte und kritische Wellen-

lange stimmen tiberein.

Bei einer ebenfrontigen Storungswelle in Rich-
tung der Rotationsachse ergeben sich zwei verschie-
dene Instabilititstypen. Der eine ist unabhingig
vom Magnetfeld und von der differentiellen Rota-
tion und fiihrt auf das Jeanssche Instabilitatskrite-
rium. Hier liegt also keine kritische Dichte vor. Der
zweite hingt allein vom Magnetfeld und der diffe-
rentiellen Rotation ab, fiithrt aber nicht zu Dichte-
anderungen des Plasmas. Er kann nur auftreten,
wenn die Rotationsgeschwindigkeit schwicher an-
wachst als bei starrer Rotation und wenn die Sto-
rungswellenlidnge eine kritische Lange 4, [Gl. (60)],
die proportional zur Stirke des Magnetfeldes ist,
tiberschritten hat.



