
This equat ion s h o w s , c o m b i n e d with ( A 1 2 ) , va l id f o r R + 0 , that G(R) satisfies ( 4 ) ( M O R S E - F E S H -

B A C H 1 1 , p . 8 0 9 ) . 

T h e f u n c t i o n G(R) satisfies the b o u n d a r y c o n d i t i o n s o n the side planes ( 3 5 a, b ) as it can be seen 
direct ly f r o m ( 4 0 ) . 

T h e b o u n d a r y c o n d i t i o n s ( 3 6 a, b ) are a lso satisf ied. Th i s can b e p r o v e d as f o l l o w s . F o r e x a m p l e , f o r 
( 3 6 a ) we c o n s i d e r at first the integral 

/ s = 2jG s ( r t ,0 | r t\0) G „ ( r t ' , 2 i | rn,zx) d / , ( A 1 5 ) 

where Gsz=dGs/dz. If 9 i e ( s ) > 2 we ob ta in f r o m the express ion ( 3 9 ) , us ing the k n o w n proper t i es o f 

H A N K E L func t i ons , 

/ , = - . A 21*-2 exp { i sf J r ( - f ) 2 ! H-\s+i (rm \Z[-Zl !) exp {i Kmt• (rt - rtl) } . (A 16) 

Since it is assumed that Z[ 4= zx this e x p r e s s i o n is an analyt ic func t i on of s except at the po l es o f T 5 ) . 
H e n c e putt ing s = 1 we have 

= 2 J G(r t , 0 J rt', 0) Gz(rt', Zi\rtl,Zl) ds = - G(rt, Zi j r t l , zx) . (A17) 
This p r o v e s ( 3 6 a ) . ( 3 6 b ) can b e p r o v e d in the same w a y . 
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In this paper an instability calculation is given for an axially symmetric gas distribution which 
has a differential rotation and in which a magnetic field is present. It is a generalization of similar 
calculations given by CHANDRASEKHAR and BEL and SCHATZMAN. The generalization becomes necessary 
for the study of problems of the formation of planetary systems, and star formation. 

The instability conditions and the critical wave lengths are calculated for plane-wave-like dis-
turbances. For disturbances running perpendicularly to the axis of rotation instability can occur 
only if the gas density exceeds a critical value which depends on the differential rotation at the 
considered distance only as long as pressure gradients and gradients of the magnetic field strength 
are negligible. If the gas density exceeds this critical value the shortest unstable wave length is 
proportional to the square root of vt2+vj$2, where i/p means the velocity of sound and t>B the 
ALFVEN-veloc ity . 

For disturbances running parallel to the axis of rotation in addition to the JEANS instability a 
new type of instability occurs due to the simultaneous action of the magnetic field and the differen-
tial rotation; for rigid rotation this instability vanishes. 
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Als ungestörte Gaskonfiguration wird ein unter 
seiner Eigengravitation stehendes Plasma gewählt, 
das Axialsymmetrie hat, von einem Magnetfeld 
durchsetzt wird und sich in differentieller Rotation 
befindet. In dem gleichzeitigen Zulassen von Magnet-
feld und differentieller Rotation liegt die Erweite-
rung zu früheren Rechnungen. Der differentiellen 
Rotation wird keine Einschränkung auferlegt; das 
ungestörte Magnetfeld dagegen soll parallel zur Ro-
tationsachse ausgerichtet sein. 

Da bei vielen astrophysikalischen Prozessen die 
Gasdichten extrem niedrig sind, hat das Plasma 
meist sehr hohe elektrische Leitfähigkeit. Es wird 
daher die vereinfachende Annahme unendlicher Leit-
fähigkeit gemacht. Der Zustand des ungestörten 
Plasmas und Magnetfeldes soll ferner in Richtung 
der Rotationsachse translationsinvariant sein, es wird 
also streng genommen unendliche Schichtdicke vor-
ausgesetzt. Trotzdem sind die hier gewonnenen Er-
gebnisse auch für Plasmaverteilungen mit endlichen 
Schichtdicken von Bedeutung. Bei ähnlichen Instabi-
litätsrechnungen von F R I C K E 3 und S A F R O N O V 6 näm-
lich hat sich gezeigt, daß die Abweichungen in den 
sich ergebenden kritischen Dichten für den Fall end-
licher Dicke der rotierenden Gasscheibe verglichen 
mit dem Fall unendlicher Dicke nur relativ gering 
sind (maximal um den Faktor 1,5), sofern die Stö-
rungswellenlänge nicht groß gegenüber der Schicht-
dicke wird. Und diese Bedingung ist in vielen Fäl-
len erfüllt. 

1. Differentialgleichungssystem für die 
Störungsgrößen 

Die Annahme unendlicher Leitfähigkeit bedeutet 
das Bestehen der Gleichung 9 

cE + vxB = 0 , (1) 

wo E und B elektrische und magnetische Feldstärke, 
V die makroskopische Geschwindigkeit des Plasmas 
und c die Lichtgeschwindigkeit bedeuten. Wegen der 
geringen Dichte im interstellaren Gas gilt ferner mit 
sehr guter Näherung /j,j> = \, wenn /̂ B die magneti-
sche Permeabilität ist. Die Gleichungen der Magneto-
hydrodynamik 9 zusammen mit den Gleichungen der 
Gravitation vereinfachen sich dadurch zu 

e f l r + g r a d (V2 + < p ) - v x r o t v } 
+ grad p + 1 B x r o t B = 0 , ( 2 ) 

4 TC 

— rot(v X B ) = 0 , div B = 0 , (3) 
at 

-l9t +div(QV) = 0 , ( 4 ) 

A@-4jiGQ = 0, (5) 

wo o, p und T die Dichte, den Druck und die Tem-
peratur des Gases, (P das Gravitationspotential, G 
und R Gravitations- und allgemeine Gaskonstante, 
f-i das Molekulargewicht des Gases und t die Zeit 
bedeuten. 

Es wird nun der Störungsansatz 
u = ü + du, dü/dt = 0 (7) 

gemacht, wo u symbolisch für jede der Größen o, p, 
V, B steht, die überstrichenen Werte die unge-

störte Größe bezeichnen und die Störungsgrößen du 
als klein gegen die ü vorausgesetzt werden. Der un-
gestörte Zustand soll ferner ein stationärer oder stati-
scher Zustand sein. Zwischen der Druck- und Dichte-
störung soll die Beziehung gelten 

dp = v-r2 (5o, ( 8 ) 

wo die allein von der Temperatur abhängige 
Schallgeschwindigkeit des Gases bedeutet. 

Als Differentialgleichungssystem für die Störungen ergibt sich, wenn grad <P noch mit Hilfe der anderen 
ungestörten Größen eliminiert wird, 

^ (<5t>) + grad (r • + d<P) - V X rot dv - (dv) X rott> 
dt 

+ { g r a d ( V ^ ) + 1 B x rot dB + 1 ( < 5 B ) x r o t ß ) (9) 
P 1 4 TT 4 71 J 

- < f i r ( 6 r a d P + L "xtotE)=°-

9 Siehe z. B. L. SPITZER, Physics of Fully Ionized Gases, Inter- Magnetohydrodynamics, Interscience Publishers Inc., New 
science Publishers Inc., New York 1956. — T. G. COWLING, York 1957. 



l (dB) - r o t [ r xdB+ (<5v) x B ] = 0 , div(<5B) = 0 , (10) 
dt 

^ - ( d g ) +div(QÖv + V ÖQ) = 0 , A(Ö0)-4JZ G 6Q = 0. ( 1 1 ) , (12) 

Um die zu Anfang erwähnte Annahme über die Axialsymmetrie des ungestörten Zustandes auszunutzen, 
werden Zylinderkoordinaten s, cp, z eingeführt. Die angenommene Translationsinvarianz in z-Richtung 
(unendliche Schichtdicke) erzwingt ferner z-Unabhängigkeit der ungestörten Größen. Daher ist 

v = ( 0 , ^ ( 5 ) , 0 ) , B = (0, 0, ß ( s ) ) , (13) 

wo die Größen in der Klammer jeweils die s-, <p- und z-Komponente und s der Abstand von der Achse 
bedeuten. Werden für die Störungen noch die Bezeichnungen 

&V=(vSivvivz), SB = (bs, bfp, bz), d@ = £, ÖQ = r] (14) 

eingeführt und wird £ (s ) mit Hilfe der Winkelgeschwindigkeit Q(s) = s - 1 v (s) ausgedrückt, so ergibt 
sich das folgende Differentialgleichungssystem: 

v,+ Qvai9-2Qv9- -±=(Bb,tM-BbMi,-BlabM) V\s-~{p+ { f V + t>s = 0 , ( 1 5 ) 
4 71 Q Q Q- \ 8 71 J\S 

V V + ~Öv(P]Q> + ( 2 Q + S Ü I S ) v S - 1 + 1 £ | „ = 0 , ( 1 6 ) 4 JT £) \ 5 / sp ' S 

vz+Üvzl(p-/l°-_-bs+ f}ig + eig = 0, (17) 

4 71 Q Q 

bs + übsl(p-Bvslz = 0, (18) 

bv -Bvvi2-(Q + süls) bs -sO(bs,s + bz]z) =0, (19) 
bz +T)bz^+ (JL +BIS ]jvs + Bvs]s+ * vml9-0, (20) 

rj + Ü R ] L Q > + + Q I S ) V s + Q ( V S , S + * vv,v + vzlz ] = 0 , (21) 

bgl8+—b9 + 1 bvlv + bz]2 = 0 , (22) 
S 5 

£|SIS+ 1 £ is + i + 71 Gr] = 0 . ( 2 3 ) 

Hierin bedeutet 

s 

• _ 3 _ 3 _ 3 _ 3 
~ 3« ' , s — 3s ' 3 © ' 12 3z 

und für die Schallgeschwindigkeit v t wurde vt 2 = 0 , (24) 

also Isothermie der ungestörten Verteilung angenommen. 

2. Instabilitätskriterien und kritische Wellenlängen 

Für einen einfachen Typ von Störungen, der ungefähr ebenen Wellen entspricht, gelingt es, Aussagen 
darüber zu gewinnen, welche Bedingungen erfüllt sein müssen, damit diese Störungen ständig weiter an-
wachsen können und wie groß die kritischen Wellenlängen sind. 

a) Störungswelle in s-Richtung 

Wir untersuchen zuerst das Verhalten einer in s-Richtung laufenden Störungswelle in der Umgebung 
der Entfernung s0 . Die Störung habe die Form 

vs~ 1 g ^ J_ 504=0 
s s 

und alle anderen Störungsgrößen ~ e - l ( Ä S _ < u *) . 



k und co sind Konstanten und die Störungswellenlänge / ist durch 1 = 2 n k 1 (26) 

gegeben. Für alle Störungsgrößen gilt 

( 2 7 ) 

Zusammen mit den Gin. ( 1 8 ) , ( 2 2 ) , ( 19 ) , (17) folgt daraus bs = b(p = vz = 0 . (28) 

Die verbleibenden Differentialgleichungen können leicht gelöst werden unter der Annahme, alle dort auf-
tretenden Koeffizienten seien konstant. Im allgemeinen ist dies natürlich nicht der Fall (auch nicht bei kon-
stantem Q, Q, B), aber je kleiner die Störungswellenlänge ist, desto besser wird diese Annahme zutreffen; 
genau müssen dazu die Bedingungen 

A < s 0 , l ü l s < Q , Ü Q , a < Q , A B i s < B (29) 

erfüllt sein, wo s0 die Entfernung bedeutet, bei der die Störung untersucht wird. Im folgenden werden wir 
die differentielle Rotation berücksichtigen, die Gradienten in der Dichte und im Magnetfeld aber vernach-
lässigen. Für Probleme, bei denen die Gravitationskraft hauptsächlich durch eine differentielle Rotation 
kompensiert wird, stellt dies eine zulässige Näherung dar. 

Es verbleibt dann ein Gleichungssystem, das unter Beachtung der Beziehungen 

Vsis+ — vs= 1 (svs)]s= - i k v s ^ - i k e~i{*s~ (30) 

S + 
s — (s £ is) [s — — i k £ | 

s 

in Matrixform geschrieben die Gestalt hat: 

i k e—i(ks—cot) 

i co 

2 Q + s0Üls 

- 2 Q 

i co 

ikB 
4 71 Q 

0 * 

i k irp5 

Q 
0 

1 

0 

VA 

V<P 

-ikB 0 i co 0 0 bz 

—i k Q 0 0 i co 0 V 
0 0 0 — 4 TI G — ik £\s 

= 0. ( 3 1 ) 

Gl. (31) hat nur dann eine nichttriviale Lösung, wenn die Determinante D(S) der linken Seite verschwindet. 
Es muß daher die Gleichung 

D{s)=ikco2{-co2 + 2Ü{2Ü + s0üls) — 4< n G q + k2 (v^2 + v%2)} = 0 (32) 

erfüllt sein, wo vB die ALFVEN-Geschwindigkeit mit 

V B 2 = B 2 ^ J I Q ( 3 3 ) 

bedeutet. Echte Instabilität der Störung liegt vor, 
wenn c o 2 < 0 und das bedeutet, wenn wir von jetzt 
ab an Stelle von s0 einfach s schreiben, 

k2{v<R2 + vB2) < 4 , T I G Q - 2 Q ( 2 Q + SQ,S). ( 3 4 ) 

Zusammen mit (26) folgt daraus als kritische Wel-
lenlänge As, die überschritten werden muß, damit 
Instabilität auftritt, 

tionsinstabilität auftreten soll. Sie hat den Wert 

Ü {•> L> i-s 1 ° 
\ OS 2 71 G (36) 

7T(VT2-F DB2) 
( 3 5 ) 

Aus (35) geht hervor, daß es eine kritische Dichte o c 

gibt, die überschritten werden muß, wenn Gravita-

ist also unabhängig von der magnetischen Feldstärke 
allein durch das Gesetz der differentiellen Rotation 
gegeben. Die kritische Wellenlänge dagegen ist vom 
Magnetfeld abhängig; sie wird in jedem Falle durch 
das Feld vergrößert. 

Als Spezialfälle gehen aus (35) und (36) die von 
C H A N D R A S E K H A R u n d F E R M I 2 ( ü = 0 ) , v o n C H A N D R A -

SEKHAR 4 (B = 0 , Q = const) und von B E L und 
S C H A T Z M A N 5 (B = 0 ) gefundenen Instabilitätskrite-
rien hervor. 



Die kritische Dichte Qc stellt eine verallgemeinerte 
RocHE-Dichte dar, denn für KEpLER-Rotation des 
Gases Ü= (G M)1'* geht (36) über in 

M 
4 71 s3 

(37) 

Die_kritische Dichte wird Null für die Fälle Q = 0 
und Q ~ s ~ 2 . Im zweiten Fall handelt es sich um 
eine Strömung, bei der rot V = 0 ist. Die kritische 
Wellenlänge Xs geht dabei in die jEANSsche Wellen-
länge Aj über, wenn noch das Magnetfeld verschwin-
det, also 

71 IT" 

G f 
für B = 0 u. Q. f 0 (38) 

b) Störungswelle in cp-Richtung 

Die Störung habe in der Umgebung der Entfer-
nung 5q die Form 

V s „ 1 e-i{k<p-»t) t 50=f=0 (39) 
5 

und alle anderen Störungsgrößen ~ . 

i co, = 0 

Dann gilt 
3 . a • j 

— - = I OJ , - = - I K , 
at dtp 62 

für alle Störungsgrößen, und ferner verschwinden 
die s-Ableitungen außer für vs, für das (svs)]s = 0 
gilt. 

Unter der Bedingung (29) und Vernachlässigung 
von Qis und Bls ergibt sich nach Ausführung der 
Differentiationen ein Gleichungssystem, das zum 
Teil entkoppelt ist. Aus ( 1 8 ) , ( 19 ) , (22) folgt als 
Bedingung einer nichttrivialen Lösung für bs und bv 

das gleichzeitige Erfülltsein der Gleichungen 

(o-kü = 0 und (o-k(sQ),s = 0 , (40) 

was nur für Q = const, also für starre Rotation er-
füllt ist. In diesem Falle liegt aber keine echte In-
stabilität vor, weil c o 2 < 0 nur für rein imaginäres_A: 
erfüllt wäre. Ebenso folgt aus ( 1 7 ) , daß co = k Q , 
wenn vz 0 sein soll. Für die weitere Instabilitäts-
untersuchung können wir daher 

bs = bv = vz = 0 (41) 

setzen. Die verbleibenden Gleichungen lauten in Matrixform 

i ( co—kQ) - 2 Q 0 0 0 vs 

2ü+s0Qls i(üi-kQ) 
_ ikB 

4 71 p s0 

i k IT2 

Q «0 

i k 
Vy 

0 
ikB 

s0 
i(co — k Q) 0 0 bz 

0 
_ ikß 

s0 
0 i{a) — kQ) 0 V 

0 0 0 — \ 71 G 
k2 

V 2 so 
£ 

(42) 

Die Forderung des Nullwerdens der Determinante D^) von (42) für die Existenz einer nichttrivialen Lö-
sung führt hier auf die Gleichung 

D(v)= ^ ( C O - k ü ) 2 \ - ( A ) - k Q ) 2 + ~ ( V T 2 + V B * ) +2ü(2ü + s0Qls) - 4 , J I G Q \ = 0 . (43) k2 

Gl. (43) hat als Lösungen, wenn wir von dem un- Und als zweite Lösung folgt 
interessanten Fall k = 0 absehen, erstens 

a> = k Q , (44) 
- {co-kÜ)2-4>jiGQ + 2Ü{2Q + s0Qis) 

+ k\ (üT2 + fß 2 ) = 0 . 
so 

(46) 
was einer Schwingung entspridit, die mit derselben 
Geschwindigkeit in 99-Richtung läuft wie das unge- Instabilität liegt unter Beachtung von (45) vor, 
störte Plasma, für einen mitbewegten Beobachter wenn 
also zeitunabhängig ist; die zeitliche Änderung für (00 — k Q)2<0 
einen mitbewegten Beobachter ist nämlich 

(47) 

f = * + ± - * = i ( < o - k Q ) . (45) 
d£ at s dtp 

also wenn für einen mit v bewegten Beobachter die 
Störung ständig anwächst. Aus (46) und (47) er-



gibt sich die Instabilitätsbedingung 

k\ { v ^ + V T ? ) < 4 7 i G Q - 2 Q { 2 Q + s 0 Q i s ) . (48) 
So 
Da wegen (39) für die Störungswellenlänge in cp-
Richtung die Beziehung 

1 = 2 nsok'1 (49) 
gilt, ergibt sich aus (48) die gleiche minimale Stö-
rungswellenlänge und die gleiche kritische Dichte 
o c wie im Fall der Störungswelle in s-Richtung, also 

K = ä + s ä s L . (50) 
/ 71 Lr 

c) Störungswelle in z-Richtung 

Als Störungswelle werde gewählt 

v ^ 1 e-i(kz-cot) u „ 1 g i(kz cot) 4=0, 
alle anderen Störungsgrößen ~ e . (51) 

Aus (20) und (22) folgt bz = 0 , und die anderen 
Differentialgleichungen liefern, wieder unter Bedin-
gung (29) und Vernachlässigung von Q\s und ß , s , 
das Gleichungssystem in Matrixform 

i co - 2 ü i kB 
4 71 o 

2 Ü + sÜis i co 0 

ikB 0 i co 

0 i kB -sQ 

0 

ik~B 

4 71 Q 

0 

i co 

-i kg 

i co 

0 

I CO 
i k VT 2 

Q 
—4 7t G 

0 

—i k 

—k2 

vs 

Vcp 

bs 

bcp 

vz 

V 

£ 

= 0 (52) 

Das System zerfällt also in zwei getrennte Systeme. Nullsetzen der Determinante D ^ von (52) ergibt 

D[z) = k2 (co2 - k2 vT2 + 4TIGQ){M*-2 OJ2 [k2 vB2 + Ü(2 ü + s Q l t ) ] + k2 vB2 (k2 + 2s ü Ü ] s ) } = 0 , ( 5 3 ) 

was entweder für 

co2 - k2 vT2 + 4 71 G Q = 0 

erfüllt ist oder für 

(54) 

co4 - 2 cü2[k2 vB2 + Ü(2 Ü + s Qla) ] 

+ k2vB2(k2 + 2sÜÜls) =0 . (55) 

Instabilität liegt vor, wenn a > 2 < 0 , und das führt 
im ersten Fall auf die jEANSsche Wellenlänge Aj als 
kritische Wellenlänge, also auf 

(55) gilt. Auflösung von (55) nach co2 liefert nun 

co2 = k2 V B 2 + Ü(2Ü + SÜ,S) 

±Ü{4 k2 vB2 +(2 ü+s üu) 2 } , / ! . (57) 

Die Bedingung co2 < 0 bedeutet, daß entweder 

k2vB2< -SÜÜls-2Ü2 (58) 
oder 

k2vB2< - 2 S Ü Ü t (59) 

i / 71 VT 
'••=<0-0 

( 5 6 ) 

sein muß. Da stets s > 0 und k nicht rein imaginär 
sein darf, ist diese Bedingung nur für ß l s < 0 zu er-
füllen. (59) stellt dann die günstigere Bedingung 
dar, und als kritische Wellenlänge Xz folgt 

X = V^TtVB _ ]/TIB 

05 

dü 

9 - r ) 3 ß Y / 2 

<0, 

(60) 
wo VT die Schallgeschwindigkeit ist. Dieser Störungs-
typ ist also unabhängig von der Größe des Magnet-
feldes. 

Im zweiten Fall ergibt sich eine andere Art von mit 
Instabilität, die nur mit dem Magnetfeld und der 
differentiellen Rotation zusammenhängt und zu kei- wo vB die ALFVEN-Geschwindigkeit (33) bedeutet, 
ner Verdichtung des Plasmas führt. Auf Grund des Für KEPLER-Rotation [ü = (G M)1/2 s~s/s] ergibt sich 
Zerfallens von (52) in zwei getrennte Systeme er- „ B s*1* 
gibt sich nämlich für die Größen vz , r), £ Null, wenn — (3 ^ GÜI)^ (61) 



Mit wachsender magnetischer Feldstärke nimmt 
die kritische Wellenlänge XZ zu, während sie mit 
größer werdender Abweichung von der starren Ro-
tation abnimmt. Bei starrer Rotation verschwindet 
die Instabilität ganz, weil dann XZ = oo . Wie (52) 
zeigt, ist bei diesem Instabilitätstyp b s ^ = 0 im Un-
terschied zu allen anderen Instabilitäten, bei denen 
stets bs = 0 ist. Das Zustandekommen der kritischen 
Wellenlänge XZ ist daher zu verstehen durch das Ge-
geneinanderwirken der differentiellen Rotation, die 
die magnetischen Feldlinien der Störung zu verlän-
gern sucht, und derjenigen MAXWELLschen Spannun-
gen, die dem entgegenwirken. Mit steigender Stö-
rungswellenlänge nehmen die rücktreibenden MAX-
WELLschen Spannungen ab, so daß von einer be-
stimmten Wellenlänge ab der differentiellen Rota-
tion eine ständige Verlängerung der Feldlinien ge-
lingt. 

Wir betrachten noch den Grenzfall B = 0 . Aus 
(60) folgt XZ = 0. Dies bedeutet aber nicht, daß hier 
notwendig Instabilität vorläge; mit XZ = 0 wird 
nämlich auch co = 0. Gl. (55) oder (57) zeigt aber, 
daß es für B = 0 (d .h. i>B = 0) noch eine zweite Lö-
sung gibt, nämlich 

oß = 2Q(2Q + sQls), B = 0 . (62) 

In diesem Fall tritt Instabilität auf, wenn 

( 5 2 D ) < 0 , (63) 
ds 

ganz unabhängig von k. Bedingung (63) ist erfüllt, 
wenn das Geschwindigkeitsfeld bei wachsendem s 
mit einer stärkeren Potenz in s abnimmt als eine 
Strömung mit rot V — 0 . 

3. Zusammenfassung 

Die Untersuchung hat folgendes gezeigt: Ein axial-
symmetrisches Plasma mit unendlicher elektrischer 

Leitfähigkeit, das sich in differentieller Rotation um 
die Symmetrieachse befindet, das von einem Magnet-
feld in Richtung der Symmetrieachse durchsetzt wird 
und in dem das Geschwindigkeitsfeld allein die 
Eigengravitation kompensiert, zeigt gegen eine zy-
lindrische Störungswelle in s-Richtung nur dann In-
stabilität, wenn die Massendichte des Plasmas eine 
bestimmte kritische Dichte Qc [Gl. (36) ] überschrit-
ten hat. Diese kritische Dichte ist unabhängig von 
der Wellenlänge der Störung und von der Stärke 
des Magnetfeldes allein durch die differentielle Ro-
tation bestimmt. Ist die kritische Dichte überschrit-
ten, so tritt Instabilität nur auf, wenn die Störungs-
wellenlänge größer als eine kritische Wellenlänge Äs 

[Gl. (35) ] ist. Mit wachsender Temperatur und 
wachsender Stärke des Magnetfeldes wächst die kri-
tische Wellenlänge. Gegenüber einer ebenfrontigen 
Störungswelle in 99-Richtung zeigt das Plasma das 
gleiche Verhalten wie im Fall der Störungswelle in 
s-Richtung. Kritische Dichte und kritische Wellen-
länge stimmen überein. 

Bei einer ebenfrontigen Störungswelle in Rich-
tung der Rotationsachse ergeben sich zwei verschie-
dene Instabilitätstypen. Der eine ist unabhängig 
vom Magnetfeld und von der differentiellen Rota-
tion und führt auf das jEANSSche Instabilitätskrite-
rium. Hier liegt also keine kritische Dichte vor. Der 
zweite hängt allein vom Magnetfeld und der diffe-
rentiellen Rotation ab, führt aber nicht zu Dichte-
änderungen des Plasmas. Er kann nur auftreten, 
wenn die Rotationsgeschwindigkeit schwächer an-
wächst als bei starrer Rotation und wenn die Stö-
rungswellenlänge eine kritische Länge XZ [Gl. ( 6 0 ) ] , 
die proportional zur Stärke des Magnetfeldes ist, 
überschritten hat. 


